2021 roadmap for sodium-ion batteries
نویسندگان
چکیده
Abstract Increasing concerns regarding the sustainability of lithium sources, due to their limited availability and consequent expected price increase, have raised awareness importance developing alternative energy-storage candidates that can sustain ever-growing energy demand. Furthermore, limitations on transition metals used in manufacturing cathode materials, together with questionable mining practices, are driving development towards more sustainable elements. Given uniformly high abundance cost-effectiveness sodium, as well its very suitable redox potential (close lithium), sodium-ion battery technology offers tremendous be a counterpart lithium-ion batteries (LIBs) different application scenarios, such stationary storage low-cost vehicles. This is reflected by major investments being made industry wide variety markets diverse material combinations. Despite associated advantages drop-in replacement for LIBs, there remarkable differences physicochemical properties between sodium give rise behaviours, example, coordination preferences compounds, desolvation energies, or solubility solid–electrolyte interphase inorganic salt components. demands detailed study underlying physical chemical processes occurring allows great scope groundbreaking advances field, from lab-scale scale-up. roadmap provides an extensive review experts academia current state art 2021 research directions strategies currently underway improve performance batteries. The aim provide opinion respect challenges opportunities, fundamental practical applications this technology.
منابع مشابه
Anode for Sodium-Ion Batteries
DOI: 10.1002/aenm.201500174 The continuous pulverization of alloy anodes during repeated sodiation/desodiation cycles is the major reason for the faster capacity decay. However, if these elements can form a compound (such as Sn 4 P 3 ) after each Na extraction, the pulverization of these elements can be partially repaired and the accumulation of pulverization can be terminated. Therefore, we ca...
متن کاملSodium and sodium-ion energy storage batteries
1359-0286/$ see front matter 2012 Elsevier Ltd. A http://dx.doi.org/10.1016/j.cossms.2012.04.002 ⇑ Corresponding author. E-mail address: [email protected] (L.F. Nazar). Owing to almost unmatched volumetric energy density, Li-ion batteries have dominated the portable electronics industry and solid state electrochemical literature for the past 20 years. Not only will that continue, but they ar...
متن کاملElectrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries
Lithium (Li)-ion batteries (LIB) have governed the current worldwide rechargeable battery market due to their outstanding energy and power capability. In particular, the LIB’s role in enabling electric vehicles (EVs) has been highlighted to replace the current oil-driven vehicles in order to reduce the usage of oil resources and generation of CO 2 gases. Unlike Li, sodium is one of the more abu...
متن کاملNa2Ti6O13: a potential anode for grid-storage sodium-ion batteries.
The ultra-fast (30C or 2 min) rate capability and impressive long cycle life (>5000 cycles) of Na2Ti6O13 are reported. A stable 2.5 V sodium-ion battery full cell is demonstrated. In addition, the sodium storage mechanism and thermal stability of Na2Ti6O13 are discussed.
متن کاملNaTiO2: a layered anode material for sodium-ion batteries
Lithium-ion batteries are currently the energy storage technology of choice in portable electronic devices and electric vehicles. In recent years, sodium-ion batteries have been actively restudied as a promising alternative because of the abundance of sodium resources and the high capacity cathodes available. But as graphitic carbon can not be used as anode material, as it is in lithium batteri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: JPhys energy
سال: 2021
ISSN: ['2515-7655']
DOI: https://doi.org/10.1088/2515-7655/ac01ef